Voronol Diagrams in L, - for VLSI Critical Area Computation
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2nd grder subdivision with in a Voronoi cell

Voronoi Diagrams are important in VLSI CAD

There are different variants of Voronoi Diagram such as nearest-neighbor, higher
order and the farthest-neighbor which fits in naturally 1n different practical situa-
tions of a VLSI layout.

e The critical Area extraction for shorts in a VLSI layout can be computed
as a function of the second order L., Vorono1 diagram.

e The critical area for opens can be modeled using higher order Voronoi
diagrams.

e The problem of computing critical area for via-blocks reduces to com-
puting a Hausdorff Voronoi digram of polygons representing clusters of

redundant vias. Critical Area for Shorts

The extraction of critical area is a fundamental problem in VLSI yield prediction. e The critical radius of an arbitrary point p in the layout for shorts is the
radius of the smallest defect which 1f centered at p overlaps with two dif-

Why and When Loo? ferent polygons.

e The critical radius of p 1s the distance of p from the second nearest polygon

e Parabolic arcs in Euclidean Voronoi diagram make its robust implementa-
to p.

tion harder. L., Voronoi diagram contains only straight line segments.

e (ritical area within a second order Voronoi cell V 1s given by:
A.(V) = [~ A(r,V)D(r)dr, which can be discretized as a summation
(A. =), A.(V)) of second order L, Voronoi edges.

e In applications where Euclidean accuracy 1s not needed, L, can give a
more practical and simple solution.

L., Distance and Bisectors

e The L, distance between the two geometric objects 1s the side length of
the smallest 1sothetic square touching them.

The deconposition of a second order Voronoi cell Vinto trapezoids
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e The critical area within a rectangle R is A.(R) = TOS( l l )
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e The critical area within a red triangle 1;..4 1s given by
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The L-infinity bisector of two lines The L-infinity bisector between a point and a line

e The critical area within a blue triangle 1s given by
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[ 1s the size of the edge of R, 1.4 and T}, parallel to e. r; and 7y
minimum and maximum critical radius of their vertices.

e (Given 2nd order Voronoi diagram of polygons oa a layer in a VLSI circuit

and assuming that the defects are square following the 3 /7> defect density
distribution, the critical area for shorts in that layer 1s given by
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e A Priority Queue to store the events.

e A balanced binary tree to store the sweep line status.

e A half edge data-structure (DCEL) to store the planer subdivision. ) :
Discussion

The L., Voronol diagram i1s a simple planar subdivision consisting of straight
line segments and 1s perticularly useful in the VLSI CAD applications where
proximity information 1s needed.
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