Voronoi Diagrams in L_∞ - for VLSI Critical Area Computation Sandeep Kumar Dey and Evanthia Papadopoulou

Università della Svizzera italiana, Faculty of Informatics
{deys, evanthia.papadopoulou}@usi.ch

Voronoi Diagrams are important in VLSI CAD

There are different variants of Voronoi Diagram such as nearest-neighbor, higher order and the farthest-neighbor which fits in naturally in different practical situations of a VLSI layout.

- The critical Area extraction for shorts in a VLSI layout can be computed as a function of the second order L_{∞} Voronoi diagram.
- The critical area for opens can be modeled using higher order Voronoi diagrams.
- The problem of computing critical area for via-blocks reduces to computing a Hausdorff Voronoi digram of polygons representing clusters of redundant vias.

2^{nd} order subdivision with in a Voronoi cell

Critical Area for Shorts

The extraction of critical area is a fundamental problem in VLSI yield prediction.

Why and When L_{∞} ?

- Parabolic arcs in Euclidean Voronoi diagram make its robust implementation harder. L_{∞} Voronoi diagram contains only straight line segments.
- In applications where Euclidean accuracy is not needed, L_{∞} can give a more practical and simple solution.

L_{∞} Distance and Bisectors

• The L_{∞} distance between the two geometric objects is the side length of the smallest isothetic square touching them.

- The *critical radius* of an arbitrary point *p* in the layout for shorts is the radius of the smallest defect which if centered at *p* overlaps with two different polygons.
- The critical radius of p is the distance of p from the second nearest polygon to p.
- Critical area within a second order Voronoi cell V is given by: $A_c(V) = \int_0^\infty A(r, V)D(r)dr$, which can be discretized as a summation $(A_c = \sum_V A_c(V))$ of second order L_∞ Voronoi edges.

The decomposition of a second order Voronoi cell V into trapezoids

- The critical area within a rectangle R is $A_c(R) = \frac{r_0^2 S}{2} (\frac{l}{r_i} \frac{l}{r_k})$
- The critical area within a red triangle T_{red} is given by $A_c(T_{red}) = \frac{r_0^2 S}{2} (STln(\frac{r_k}{r_j}) - \frac{l}{r_k})$

The L-infinity bisector of two lines

The L-infinity bisector between a point and a line

L_{∞} Voronoi Diagram of Polygons

Data-Structures required to construct and store the Voronoi diagram:

- A Priority Queue to store the events.
- A balanced binary tree to store the sweep line status.
- A half edge data-structure (DCEL) to store the planer subdivision.

L_{∞} Farthest Segment Voronoi Drigram

• The critical area within a blue triangle is given by T_{blue} is $A_c(T_{blue}) = \frac{r_0^2 S}{2} \left(\frac{l}{r_j} - STln(\frac{r_k}{r_j}) \right)$

l is the size of the edge of *R*, T_{red} and T_{blue} parallel to e. r_j and r_k minimum and maximum critical radius of their vertices.

• Given 2nd order Voronoi diagram of polygons on a layer in a VLSI circuit and assuming that the defects are square following the r_0^2/r^3 defect density distribution, the critical area for shorts in that layer is given by

$A_c = r_0^2 \left(\sum_{\substack{red,\\nrime}}\right)$	$\frac{S_i l_i}{r_i} - \sum_{\substack{blue, \\ prime}}$	$\frac{S_i l_i}{r_i} + \frac{1}{2}$	$\sum_{\substack{red,\\ on nrime}} S_e^2 T_e$	$\frac{r_k}{r_j} - \frac{1}{2}$	$\sum_{\substack{blue,\\on prime}}$	$S_e^2 T_e ln \frac{r_k}{r_j}$ -	$\left \frac{B}{2} \right $
preme	prince			100			
e_i	e_i		e_j ,		e_j ,		
			wrt		wrt		
			e		e		

Discussion

The L_{∞} Voronoi diagram is a simple planar subdivision consisting of straight line segments and is perticularly useful in the VLSI CAD applications where proximity information is needed.

• Given the structure of neighborhood information the farthest segment voronoi diagram in L_{∞} can be computed in linear time.

References

- [1] Evanthia Papadopoulou, "The higher order Hausdorff Voronoi diagram and VLSI critical area extraction for via-blocks", 5th International Symposium on Voronoi diagrams in Science and Engineering, pp. 181-191, 2008.
- [2] Evanthia Papadopoulou, "Higher Order Voronoi Diagrams of Segments for VLSI Critical Area Extraction", 18th International Symposium on Algorithms and Computation, vol. 4835 of LNCS, pp. 716-727, 2007.
- [3] F. Aurenhammer, R.L.S. Drysdale and H. Krasser, "Farthest line segment Voronoi diagrams", Information Processing Letter, vol. 100 no. 6, pp. 220-225, December 2006.
- [4] Evanthia Papadopoulou and D. T. Lee, "The L_{∞} Voronoi Diagram of Segments and VLSI Applications", Internation Journal of Computational Geometry and Application, vol. 11 no. 5, pp. 503-528, 2001.
- [5] Franz Aurenhammer, "Voronoi Diagrams A Survey of a Fundamental Geometric Data Structure", ACM Computing Surveys, vol. 23, no. 3, September 1991.
- [6] D. T. Lee, "On *k*-Nearest Neighbor Voronoi Diagrams in the Plane", IEEE Transactions on Computers, vol. c-31, no. 6, pp. 478-487, June 1982.